Face-Specific Resting Functional Connectivity between the Fusiform Gyrus and Posterior Superior Temporal Sulcus

نویسندگان

  • Nicholas B. Turk-Browne
  • Samuel V. Norman-Haignere
  • Gregory McCarthy
چکیده

Faces activate specific brain regions in fMRI, including the fusiform gyrus (FG) and the posterior superior temporal sulcus (pSTS). The fact that the FG and pSTS are frequently co-activated suggests that they may interact synergistically in a distributed face processing network. Alternatively, the functions implemented by these regions may be encapsulated from each other. It has proven difficult to evaluate these two accounts during visual processing of face stimuli. However, if the FG and pSTS interact during face processing, the substrate for such interactions may be apparent in a correlation of the BOLD timeseries from these two regions during periods of rest when no faces are present. To examine face-specific resting correlations, we developed a new partial functional connectivity approach in which we removed variance from the FG that was shared with other category-selective and control regions. The remaining face-specific FG resting variance was then used to predict resting signals throughout the brain. In two experiments, we observed face-specific resting functional connectivity between FG and pSTS, and importantly, these correlations overlapped precisely with the face-specific pSTS region obtained from independent localizer runs. Additional region-of-interest and pattern analyses confirmed that the FG-pSTS resting correlations were face-specific. These findings support a model in which face processing is distributed among a finite number of connected, but nevertheless face-specialized regions. The discovery of category-specific interactions in the absence of visual input suggests that resting networks may provide a latent foundation for task processing.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Connectivity Analysis Reveals a Cortical Network for Eye Gaze Perception

Haxby et al. (Haxby JV, Hoffman EA, Gobbini MI. 2000. The distributed human neural system for face perception. Trends Cogn Sci. 4:223-233.) proposed that eye gaze processing results from an interaction between a "core" face-specific system involved in visual analysis and an "extended" system involved in spatial attention, more generally. However, the full gaze perception network has remained po...

متن کامل

Explicating the Face Perception Network with White Matter Connectivity

A network of multiple brain regions is recruited in face perception. Our understanding of the functional properties of this network can be facilitated by explicating the structural white matter connections that exist between its functional nodes. We accomplished this using functional MRI (fMRI) in combination with fiber tractography on high angular resolution diffusion weighted imaging data. We...

متن کامل

Direct structural connections between voice- and face-recognition areas.

Currently, there are two opposing models for how voice and face information is integrated in the human brain to recognize person identity. The conventional model assumes that voice and face information is only combined at a supramodal stage (Bruce and Young, 1986; Burton et al., 1990; Ellis et al., 1997). An alternative model posits that areas encoding voice and face information also interact d...

متن کامل

Op-brai150052 1382..1393

Whole-brain voxel-based unbiased resting state functional connectivity was analysed in 418 subjects with autism and 509 matched typically developing individuals. We identified a key system in the middle temporal gyrus/superior temporal sulcus region that has reduced cortical functional connectivity (and increased with the medial thalamus), which is implicated in face expression processing invol...

متن کامل

Development of the Intrinsic Language Network in Preschool Children from Ages 3 to 5 Years

Resting state studies of spontaneous fluctuations in the functional magnetic resonance imaging (fMRI) blood oxygen level dependent signal have shown great potential in mapping the intrinsic functional connectivity of the human brain underlying cognitive functions. The aim of the present study was to explore the developmental changes in functional networks of the developing human brain exemplifi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2010